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History & why you 
should care

• 80’s and 90’s: 
characterization of the 
liquid vapor phase 
transition

• multifragmentation: 
“new” process

• Lessons learned in 
producing the phase 
diagram



Why there are so few 
nuclear phase diagrams...

The liquid vapor phase 
diagram – 3 problems:

1. Finite size: How to scale 
to the infinite system?

2. Coulomb: Long range 
force

3. No vapor in equilibrium 
with a liquid drop. 
Emission into the 
vacuum.



Ideal gas law and 
cluster picture

Pressure:

Density:

p(T ) =
∑

A

pA(T ) = T
∑

A

nA(T ),

ρ =
∑

A

AnA(T ),

Non-ideal gas of monomers, write it in terms 
of partial pressures of the clusters (of size A)

Cluster concentrations (nA) are 
everything



Fisher Droplet Model 
(FDM)

FDM developed to describe formation of 
drops in macroscopic fluid

The FDM allows us to approximate a real gas 
with and ideal gas of clusters (monomers, 
dimers, trimers, etc.)

The FDM provides a general formula to 
describe the concentrations nA(T)

nA(T ) = g(A) exp

(

−
c0Aσ

T

)

= q0A
−τ exp

(

c0A
σ

[

1

Tc
−

1

T

])

Lesson 
learned: TC 
and c0 appear 
together

q0A
−τ exp (ωAσ) ω =

c0

Tc
surface free energy



1. Finite size effects: 
Complement

Infinite liquid

nA(T ) = g(A) exp

(

−
ES(A)

T

)

Fisher+Complement

nA(T, A0) = q0
A−τ (A0 − A)−τ

A−τ
0

exp
(

−c0[A
σ + (A0 − A)σ − Aσ

0 ]
( 1

T
−

1

Tc

))

) = q0A
−τ exp

(

−c0A
σ

(

1

T
−

1

Tc

))

Admits the same Tc as the 
infinite systemOcean

A

nA(T, A0) =
g(A)g(A0 − A)

g(A0)
exp

(

−
ES(A) + ES(A0 − A) − ES(A0)

T

)

(2)

are
Finite liquid drop

A
A0 A0-A

, and c0

Moretto et al. PRL 94, 202701 (2005)



• Magnetic transition
• Isomorphous with liquid-

vapor transition
• Hamiltonian for s-sites and 
B-external field

Ising model (or lattice gas)



Test Complement with 
Ising model

 2d lattice, L=40, ρ=0.05, 
ground state drop 
A0=80

 Regular Fisher, Tc=2.07  

  Taking into account the 
finite system 
Tc = 2.32±0.02 to be 
compared with the 
theoretical value of 
2.27...

 Can we declare victory?

A=1

A=10

� =
Tc − T

Tc



Scale many systems 
(Ising droplets)

 Tc = 2.29±0.01 for the 
free magnetization 
case to be compared 
with the theoretical 
value of 2.27...

 Tc = 2.30±0.01 for the 
fixed magnetization
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Lesson learned: finite 
systems – coexistence 
ends long before Tc 

Lesson learned: with the 
right physical picture, all of 
the data point to Tc

� =
Tc − T

Tc



From finite pressure and 
density to bulk values 

Onsager solution for 
the magnetization 
mapped to density 
(dotted line)

Fisher+complement

Let A0→∞ (dashed 
line), recover 
Onsager!

lim
A0→∞

nA(A0, T ) = nA(T )



Problem 1: Finite size 

How to scale to the infinite system? Solved. 
Put a liquid drop “extension” (complement) 
into the Fisher formula.

At the same level of approximation as the 
original Fisher expression

Start with a finite system, recover bulk Tc, c0, 
density and pressure values

And vice versa, start with infinite system and 
go to finite system

lim
A0→∞

nA(A0, T ) = nA(T )Fisher+complement Fisher

Lesson learned: Tc is a property 
of the infinite system



Problem 2: Coulomb – 
definition of phases (?)

Phases are uniform homogeneous systems

Phase transitions ⇒ short range interactions

Long range interactions: difficult to define 
phases



What to do with 
the Coulomb energy?

Ec = EDSE + EDV + EVSE

EDSE : Drop self energy (EASY)

 EDV : Drop-vapor interaction energy. (Take the 
vapor at infinity!!)

 EVSE : Vapor self energy. (Diverges for an 
infinite amount of vapor!!)



The problem of the 
droplet-vapor interaction

 If each cluster is bound (Q<0), OK.

 If at least one cluster seriously 
unbound (|Q|>>T), then trouble. 
Entropy problem.
For a dilute phase at infinity, this 

spells disaster!
At infinity,
ΔE is very negative
ΔS is very positive
ΔF can never become zero.

∆F = ∆E − T∆S



Vapor self energy
 Infinite vapor, self energy diverges (with Coulomb) 
  Try taking a small sample of a dilute vapor so that 

EVSE/A << T
 Alternatively, we could consider a finite box containing 

a finite system. Unfortunately, at any other distance 
smaller than infinity the result depends annoyingly on 
the size (and shape) of the container! 
 inelegant and non-general situation leading to 

confusing questions about true equilibrium.

Use a box? Results will depend on size (and shape!) 
of box. 

A box provided by nature is the only way out! 



Solution: 
make your own box

Van der Waals liquid, ΔHm increases with 
increasing A and saturates for infinite systems.
Add Coulomb. Put it in a box.

ΔHm begins to decrease when ∂µ/∂A=0, 
(µ=ΔHm=∂Eb/∂A)

Without a box, or as n →∞, A=29 is where ΔHm  
begins to decrease

For 208Pb in a box, ∂µ/∂A=0 when n=1.16

Coulomb problem is “solved” (ΔF=0 is possible), 
but no room for vapor

(to scale)

Eb ≈ avA + asA
2/3 + acZ

2
(

1

A1/3
−

1

nA1/3

)

K =
Z

A
Â =

1

5

as

ac

1

K2

n

n − 1
.

V=1.56 V(208P)



How to deal with 
Coulomb?

Transition state Van der Waals
concentration

n = n0e
−

VTS
T = n0e

−
VSurf

T e−
VC
T

nVdW

Lesson learned: 
We must define 
the phases if we 
are going to 
discuss phase 
transitions.



Problem 3: no physical 
vapor in equilibrium

Is there a gas phase in 
equilibrium with the droplet? 
(NO)

Can we still make a 
thermodynamic characterization 
of the gas phase? (YES)

Γ

h̄
= nA(T ) 〈vA(T )σ(vA)〉



ISiS measured lifetimes 
compared to yields
Experimentally measured 
lifetimes and yields both 
controlled by the same 
Boltzmann factor

Evidence for a rate 
description of the physical 
process

〈n〉 ∝ Γ ∝ e−B/T .

t =
h̄

Γ
∝ eB/T .

Lifetimes: L. Beaulieu et al., Phys. Rev. Lett. 84, 5971 (2001) & 
PRC 63, 031302 (2002)

Yield comparison: L. G. Moretto et al., arXiv/nucl-ex/0209009, 
LBNL-51306

time (fm/c)

Lesson learned: 
First order phase 
transitions are 
trivial



Consider two different phases like two condensed phases with 
different packing (e.g f.c.c. and b.c.c.).

Calculate for each the molar free energy as a function of V at 
constant T.

Conclusion:1st order phase transitions are describable in 
terms of the thermodynamic properties of each phase 

considered independently. 
Equilibrium conditions do not require the contact of the two 
phases!

Fm

V

Common tangent 
minimizes free energy

T



Solutions found
Going from the finite 
system to the infinite 
system and vice versa: 
Complement

Coulomb and defining 
phases: Transition 
state

No vapor: Use the 
rates (with Coulomb 
removed) and infer 
the concentrations of 
a “virtual” vapor

Ei = ELD(Z0, A0) + Erot(A0, J)

Ef = ELD(Z, A) + ELD(Z0 − Z, A0 − A) + Ef
rot +

Z(Z0 − Z)e2

r0(A1/3 + (A0 − A)1/3) + d

A = 2Z

(

1 +
E∗

ELD(Z, 2Z)

)

J = J0 + J1E
∗

T =

√

√

√

√

E∗

A
8

(

1 +
E∗

ELD(Z0, A0)

)



Compound nucleus data 
(88-Inch Cyclotron)

Old school: gas Si 
telescopes

Reverse kinematics 
reaction

(b)

for emission of complex fragments from the compound nuclei: (a) 70Se produced in the



EOS TPC data 
(Bevelac)

E/A= 1 GeV

Finite size effects not appreciated initially

PHYSICAL REVIEW C 67, 024609 2003

Tc = 5 MeV



ISiS data (AGS)
Gas-Si-CsI sphere

π + Au, E = 8 GeV
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All data

Tc=18.5±1.8 MeV

π + 197Au, 8 GeV

84Kr + 12C
139La + 12C
197Au + 12C
E/A = 1 GeV

64Ni + 12C
E/A = 6-14 MeV



Thermodynamic aside
• Principle of corresponding states:

 Cubic coexistence curve.
 Empirically given by:

  +  for liquid
  −  for vapor.

• Observed empirically in many fluids: 
E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).

J. Verschaffelt, Comm. Leiden 28, (1896).
J. Verschaffelt, Proc. Kon. Akad. Sci. Amsterdam 2, 588 (1900).

D. A. Goldhammer, Z.f. Physike. Chemie 71, 577 (1910).

• 1/3 is critical exponent β≈0.328

ρl,g

ρc
= 1 +

3
4

�
1− T

Tc

�
± 7

4

�
1− T

Tc

�1/3



Density (vapor branch)

Liquid brach, 
Guggenheim scaling

b1 and b2 are fit 
parameters

Change sign of b1 for 
the liquid density

Density phase diagram 
for infinite system

ρ = q0

∑

A

A1−τ exp
(

−c0A
σ

(

1

T
−

1

Tc

))

ρ

ρc
= 1 + b1ε + b2ε

β

ε =
Tc − T

Tc

c

β =
τ − 2

σ
= .327

ρl

ρc
= 1 − b1ε + b2ε

β

ρc = 0.08 fm-3

T=0 is normal density; this sets 
the absolute density scale



Pressure phase diagram 
for infinite system

Pressure

At Tc

p = q0T
∑

A

A−τ exp
(

−c0A
σ

(

1

T
−

1

Tc

))

pc = q0Tc

∑

A

A−τ = q0Tcζ(τ)

pc=0.41 MeV/fm-3



Conclusions
Solved three problems in the way of building a 
phase diagram of nuclear matter
1. Finite size effects: use complement
2. Coulomb: use transition state
3. No physical vapor: use rate picture
Now have a determination of the liquid-vapor 
coexistence line for infinite nuclear matter

Tc(MeV) ρc(fm
-3) pc(MeV/fm

3)

18.5±1.8 0.077±0.018 0.41±.18



• Tc and c0 appear together

• You will get Tc wrong if you don’t understand your finite 
size effects. 

• Tc is a property of the infinite system. Didn’t observe it. 
Couldn’t even reach it. But all data point to it.

• We must carefully define the phases first before we 
discuss phase transitions. (Coulomb)

• 1st order phase transitions are trivial;  they can be 
described in terms of the thermodynamic properties of 
each phase considered independently.

Lessons learned: physical 
picture (clusters)



Lesson learned: discovery
• Clausius-Clapeyron Equation:

                                  , valid when: 

  vapor pressure ~ ideal gas
  molar enthalpy Hevaporation independent of T

•  Neither true as T~Tc:
–  The two deviations compensate:

• Observed empirically for several fluids: 
“Thermodynamics” E. A. Guggenheim.

p = p0 exp
�
−∆H

T

�

p

pc
= exp

�
−∆H

Tc

�
1− Tc

T

��

Discovery occurred shortly after neutrons 
could be described as evaporatinge+e- collisions?



Lessons learned: what 
did not work

• Anything that had to do with fluctuations

Intermittency, moments of the mass 
distributions, etc. – finite size effects

• Energy scans, vary system size, etc.

Finite size effects prevent us from ever 
reaching the critical point. 

However, with the right physical picture, all 
data “point” to the critical temperature



Phase transitions from Hadronic to Partonic Worlds

Phase transitions in the Hadronic world
• Pairing (superconductive) Transition

finite size effects: correlation length
• Shape transition

all finite size effects, shell effects

• Liquid-vapor (with reservations) van 
der Waals-like 

finite size effects due to surface

Tc ≈ 18.5 MeV
ρc ≈ 0.53 ρ0

pc ≈ 0.41 MeV/fm3

Phase transitions in the partonic world
• QGP 
Finite size effects?



Using the lessons learned
Real fluids Liquid-vapor QGP

Order 
parameter?

phases defined?

Finite size 
effects?

Tc and another 
observable?

Physical picture

First order phase 
transition

second (higher 
order) phase 

transition

density density ?

yes yes ?

not relevant yes, but solved ?

yes, surface 
energy

yes, surface 
energy

?

ideal gas law ideal gas law ?

yes yes ?

yes at Tc and ρc yes, at Tc and ρc 
for symmetric 
neutral infinite 
nuclear matter

?



Thank you



• A gas of bags : the gas that wasn’t.
 Instability against coalescence

• Criticality?
 Fractality of bags.

• Can surface energy cure anything?
 NO



The source of all troubles…..

!e Ha"dorn #ectrum ! 



The (too) many ways of obtaining the Hagedorn spectrum
( given the experimental evidence!!) 

1. Bootstrap

2. MIT Bag Model

3. Regge Trajectories

4. Fractal shapes ( if no surface 
energy)

5. -----------





The partonic world (QGP)
(a world without surface?)

•The MIT bag model says the pressure of a QGP bag is constant:

•                        ; g: # degrees of freedom, constant p = B,  constant                       .

•The enthalpy density is then

• 

•which leads to an entropy of

• 

•and a bag mass/energy spectrum (level density) of

                              .

•This is a  Hagedorn spectrum:

• 

Partonic vacuum

Hadronic vacuum

€ 

p =
gπ 2

90
TΗ
4 = B

€ 

ε =
H
V

=
E
V

+ p =
gπ 2

30
TΗ
4 + B

€ 

S =
δQ
T∫ =

dH
T0

H

∫ =
H
TΗ

≡
m
TΗ

€ 

ρ m( ) = exp S( )∝exp m
TΗ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

ρH m( )∝ m0

m
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
x

exp m
TΗ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

TH = B 90
gπ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
4

?

mm0

ln
 ρ
Η
(m

)



Can a “thermostat” have a temperature 
other than its own?

•  

•  

• Is T0 just a “parameter”?

•  

• According to this, a thermostat, can have 
any temperature lower than its own!

T = Tc = 273K
or

0 ≤ T ≤ 273K?



•The total level density:

•Most probable energy partition:

• TH is the sole temperature characterizing the system:

•A Hagedorn-like system is a perfect thermostat.
•If particles are generated by the Hagedorn bag, their concentration is:

•Volume independent! Saturation!  Just as for ordinary water, but with only 
one possible temperature, TH!

Equilibrium with Hagedorn bags:
Example : an ideal vapor of N particles of mass m and energy ε

€ 

P E,ε( ) = ρH E −ε( )ρiv ε( ) = g(m) V N

N! 3
2
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ !

mε
2π
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2
N

exp E −mN −ε
TΗ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

∂ lnP
∂ε

=
3N
2ε

−
1
TΗ

= 0⇒ ε
N

=
3
2
TΗ

€ 

∂ lnP
∂N V

= −
m
TΗ

+ ln g(m)V
N

mTΗ
2π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

= 0⇒ N
V

= g(m) mTΗ
2π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2
exp − m

TΗ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρΗ(E)

ideal vapor ρiv
•particle mass = m
•volume = V
•particle number = N
•energy = ε



1.Anything in contact with a Hagedorn bag acquires the temperature TH 

of the Hagedorn bag.

2.If particles (e.g. πs) can be created from a Hagedorn bag, they will 

form a saturated vapor at fixed temperature TH.

5.If different particles (i.e. particles of different mass m) are created 

they will be in chemical equilibrium.

ρH(E)

The story so far . . .



Now to the gas of bags …

  (Gas of resonances? ) 



Stability of the Hagedorn bag against fragmentation

•If no translational or positional entropy, then the Hagedorn bag is indifferent to fragmentation.

ρH(m)
ρH(mk)

ρH(m3)
ρH(m2)

ρH(m4)

ρH(m5)

ρH(m5)

ρH(m1)

ρH(m6)

€ 

exp m
TΗ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = exp

mi
i=1

k

∑
TΗ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

indifferent



Resonance gas - A gas without pressure
No intrinsic energy and/or entropy penalty for aggregation

How many particles?

1 ≤ N ≤ Nmax

Ideal gas law:



Resonance Gas Cont’d



Equilibrium with Hagedorn bags:

€ 

N
V

= g(m) mTΗ
2π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2
exp − m

TΗ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρΗ(E)

ideal vapor ρiv
•particle mass = m
•volume = V
•particle number = N
•energy = ε

€ 

g(m) = e
m
TH

€ 

N
V

=
mTΗ
2π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2



T < TH T = TH T = TH 

Non saturated gas of π 
etc.

       Gas of bags + 

saturated gas of π etc.

One big bag 



T

€ 

ε
T 4

TH



Bags have no surface energy :

What about criticality?



€ 

P(A) = Kg(A)e
−
CsA

2 3

T = KA−τe
CsA

2
3

Tcr e
−
CsA

2
3

T

€ 

g(A) ≅ A−τeKA
2
3

? ?

€ 

lng(A) = SurfaceEntropy = KA
2
3 =

Cs

Tcr
A
2
3

This is predicated upon a nearly spherical 
cluster.



Lattice   Animals

///

/// ///

/// ///

///

///

///

How many animals of size A ?               

Fisher guesses          

To my knowledge nobody knows exactly why . 

€ 

lnP(A) = −τ lnA + KA
2
3





……. Instead 

€ 

lnP(A) =αA
2
3 + βA

How to resolve  this conundrum?….

ln
 P

(A
,S

)

S

Sphere-like
fractal

€ 

P(A,S)e
−
S
T

€ 

P(A,T) = P(A,S)e
−
S
T ds∫

With increasing temperature ..

T

Fractal dimension goes from surface-like to volume-like 



For 3d animals



Back to the bags…..

No surface energy, no Boltzmann factor to keep the bag 
sphere-like.

So, at TH , the only natural temperature of the bag 
   fractality ≅ criticality
 already appears,

although the coexistence of the bag with a non Hagedorn 
vapor is 1st order.    





A bag with a surface?
•Remember the leptodermous expansion:

• 
•Notice that in most liquids aS ≈ -aV
•However, in the MIT bag there is only a volume term

• 
•Should we introduce a surface term? Although we may not know the magnitude of it, we know the sign 
(+). The consequences of a surface term:

• 

• 

€ 

M = E ≅ H = aV A + aSA
2 3 + aCA

1 3

€ 

εV = H = f T( ) + B[ ]V + aSV
2 3 ?( )

V

T
T c

€ 

p =
1
3
f T( ) − B +

2
3
aSV

−1 3⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 at equilibrium

€ 

T = f −1 3 B +
2
3
aSV

−1 3⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
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Rumors have it that the bags surface energy coefficient 
may be negative ! ? !

€ 

CS < 0

Could it be that :
What one throws away by neglecting surface entropy
One is forced (by data?) to put back with a negative CS   



Stability of a gas of bags

Bags of different size are of different 
temperature. If the bags can fuse or fission, the 
lowest temperature solution at constant energy 
is a single bag. The isothermal solution of 
many equal bags is clearly unstable.

A gas of bags is always thermodynamically 
unstable.

A bag decays in vacuum by radiating (e.g. pions). As 
the bag gets smaller, it becomes HOTTER! Like a 
mini-black hole.

The decay of a bag with surface



Conclusions

1)   The bag supports a 1st order phase transition

2) A gas of bags is entropically unstable towards coalescence

Bag Non Hagedorn particles ( pions?)

at a single TH

Hagedorn drops
Bag



Conclusions  ctd..

3)   The lack of surface energy entropically drives bag to fractal 
shape 

4) Addition of surface energy makes drops non isothermal.  



1.Anything in contact with a Hagedorn bag acquires the temperature TH 

of the Hagedorn bag.

2.If particles (e.g. πs) can be created from a Hagedorn bag, they will 

form a saturated vapor at fixed temperature TH.

5.If different particles (i.e. particles of different mass m) are created 

they will be in chemical equilibrium.

ρH(E)

The story so far . . .


